262 research outputs found

    Radiographic cervical spine degenerative findings: a study on a large population from age 18 to 97 years

    Get PDF
    AbstractPurposeThe aims of this study were (1) to determine the prevalence of radiographic cervical disc degeneration in a large population of patients aged from 18 to 97 years; (2) to investigate individually the prevalence and distribution of height loss, osteophyte formation, endplate sclerosis and spondylolisthesis; and (3) to describe the patterns of cervical disc degeneration.MethodsA retrospective study was performed. Standard lateral cervical spine radiographs in standing, neutral position of 1581 consecutive patients (723 males, 858 females) with an average age of 41.2 ± 18.2 years were evaluated. Cervical disc degeneration was graded from C2/C3 to C6/C7 based on a validated quantitative grading system. The prevalence and distribution of radiographic findings were evaluated and associations with age were investigated.Results53.9% of individuals had radiographic disc degeneration and the most affected level was C5/C6. The presence and severity of disc degeneration were found to be significantly associated with age both in male and female subjects. The most frequent and severe occurrences of height loss, osteophyte formation, and endplate sclerosis were at C5/C6, whereas spondylolisthesis was most observed at C4/C5. Age was significantly correlated with radiographic degenerative findings. Contiguous levels degeneration pattern was more likely found than skipped level degeneration. The number of degenerated levels was also associated with age.ConclusionsThe presence and severity of radiographic disc degeneration increased with aging in the cervical spine. Older age was associated with greater number of degenerated disc levels. Furthermore, the correlations between age and the degree of degenerative findings were stronger at C5/C6 and C6/C7 than at other cervical spinal levels

    Sagittal wedging of intervertebral discs and vertebral bodies in the cervical spine and their associations with age, sex and cervical lordosis: A large-scale morphological study

    Get PDF
    AbstractMany recent studies have focused on the functional and clinical importance of cervical lordosis. However, there is little accurate knowledge of the anatomical parameters that constitute cervical lordosis (i.e., the sagittal wedging angles of intervertebral discs and vertebral bodies) and their associations with age and sex. Standing lateral cervical radiographs of 1020 subjects (424 males, 596 females) with a mean age of 36.6 ± 17.0 years (range 7–95 years) were evaluated retrospectively. Cervical lordosis, the sum of intervertebral disc wedging angles from C2/C3 to C6/C7 and the sum of vertebral body wedging angles from C3 to C7 were measured. The sum of intervertebral disc wedging and the sum of vertebral body wedging were 20.6° ± 14.7° and −12.8° ± 10.3°, respectively. The sum of intervertebral disc wedging increased significantly with age and was significantly greater in males than females, whereas there was no sex‐related difference in the sum of vertebral body wedging. The sum of intervertebral disc wedging was negatively correlated with sum of vertebral body wedging. Wedging of discs contributed to C2–C7 cervical lordosis more significantly than wedging of vertebral bodies. There were moderate positive correlations between cervical lordosis and intervertebral disc wedging angles at C3/C4, C4/C5 and C5/C6; weak correlations were observed at C2/C3 and C6/C7. This study constitutes the largest currently available analysis comprehensively documenting the anatomical characteristics of sagittal wedging of intervertebral discs and vertebral bodies in the cervical spine. The findings could improve understanding of the internal architecture of cervical lordosis among clinicians

    Planning the Surgical Correction of Spinal Deformities: Toward the Identification of the Biomechanical Principles by Means of Numerical Simulation

    Get PDF
    The set of surgical devices and techniques to perform spine deformity correction has widened dramatically. Nevertheless, the rate of complications due to mechanical failure remains rather high. Indeed, basic research about the principles of deformity correction and the optimal surgical strategies (i.e. the choice of the fusion length, the most appropriate instrumentation, the degree of tolerable correction) did not progress as much as the techniques. In this work, a software approach for the biomechanical simulation of the correction of patient-specific spinal deformities aimed to the identification of its biomechanical principles is presented. The method is based on three dimensional reconstructions of the spinal anatomy obtained from biplanar radiographic images. A user-friendly graphical interface allows for the planning of the deformity correction and to simulate the instrumentation. Robust meshing of the instrumented spine is provided by using consolidated computational geometry and meshing libraries. Based on finite element simulation, the program predicts the loads acting in the instrumentation as well as in the biological tissues. A simple test case (reduction of a low grade spondylolisthesis at L3-L4) was simulated as a proof-of-concept. Despite the limitations of this approach, the preliminary outcome is promising and encourages a wide effort towards its refinement

    The strain distribution in the lumbar anterior longitudinal ligament is affected by the loading condition and bony features: An in vitro full-field analysis

    Get PDF
    The role of the ligaments is fundamental in determining the spine biomechanics in physiological and pathological conditions. The anterior longitudinal ligament (ALL) is fundamental in constraining motions especially in the sagittal plane. The ALL also confines the intervertebral discs, preventing herniation. The specific contribution of the ALL has indirectly been investigated in the past as a part of whole spine segments where the structural flexibility was measured. The mechanical properties of isolated ALL have been measured as well. The strain distribution in the ALL has never been measured under pseudo-physiological conditions, as part of multi-vertebra spine segments. This would help elucidate the biomechanical function of the ALL. The aim of this study was to investigate in depth the biomechanical function of the ALL in front of the lumbar vertebrae and of the intervertebral disc. Five lumbar cadaveric spine specimens were subjected to different loading scenarios (flexion-extension, lateral bending, axial torsion) using a state-of-the-art spine tester. The full-field strain distribution on the anterior surface was measured using digital image correlation (DIC) adapted and validated for application to spine segments. The measured strain maps were highly inhomogeneous: the ALL was generally more strained in front of the discs than in front of the vertebrae, with some locally higher strains both imputable to ligament fibers and related to local bony defects. The strain distributions were significantly different among the loading configurations, but also between opposite directions of loading (flexion vs. extension, right vs. left lateral bending, clockwise vs. counterclockwise torsion). This study allowed for the first time to assess the biomechanical behaviour of the anterior longitudinal ligament for the different loading of the spine. We were able to identify both the average trends, and the local effects related to osteophytes, a key feature indicative of spine degeneration

    A novel finite element model of the ovine lumbar intervertebral disc with anisotropic hyperelastic material properties

    Get PDF
    The Ovine spine is an accepted model to investigate the biomechanical behaviour of the human lumbar one. Indeed, the use of animal models for in vitro studies is necessary to investigate the mechanical behaviour of biological tissue, but needs to be reduced for ethical and social reasons. The aim of this study was to create a finite element model of the lumbar intervertebral disc of the sheep that may help to refine the understanding of parallel in vitro experiments and that can be used to predict when mechanical failure occurs. Anisotropic hyperelastic material properties were assigned to the annulus fibrosus and factorial optimization analyses were performed to find out the optimal parameters of the ground substance and of the collagen fibers. For the ground substance of the annulus fibrosus the investigation was based on experimental data taken from the literature, while for the collagen fibers tensile tests on annulus specimens were conducted. Flexibility analysis in flexion-extension, lateral bending and axial rotation were conducted. Different material properties for the anterior, lateral and posterior regions of the annulus were found. The posterior part resulted the stiffest region in compression whereas the anterior one the stiffest region in tension. Since the flexibility outcomes were in a good agreement with the literature data, we considered this model suitable to be used in conjunction with in vitro and in vivo tests to investigate the mechanical behaviour of the ovine lumbar disc

    Automatic Calculation of Cervical Spine Parameters Using Deep Learning: Development and Validation on an External Dataset

    Full text link
    STUDY DESIGN Retrospective data analysis. OBJECTIVES This study aims to develop a deep learning model for the automatic calculation of some important spine parameters from lateral cervical radiographs. METHODS We collected two datasets from two different institutions. The first dataset of 1498 images was used to train and optimize the model to find the best hyperparameters while the second dataset of 79 images was used as an external validation set to evaluate the robustness and generalizability of our model. The performance of the model was assessed by calculating the median absolute errors between the model prediction and the ground truth for the following parameters: T1 slope, C7 slope, C2-C7 angle, C2-C6 angle, Sagittal Vertical Axis (SVA), C0-C2, Redlund-Johnell distance (RJD), the cranial tilting (CT) and the craniocervical angle (CCA). RESULTS Regarding the angles, we found median errors of 1.66° (SD 2.46°), 1.56° (1.95°), 2.46° (SD 2.55), 1.85° (SD 3.93°), 1.25° (SD 1.83°), .29° (SD .31°) and .67° (SD .77°) for T1 slope, C7 slope, C2-C7, C2-C6, C0-C2, CT, and CCA respectively. As concerns the distances, we found median errors of .55 mm (SD .47 mm) and .47 mm (.62 mm) for SVA and RJD respectively. CONCLUSIONS In this work, we developed a model that was able to accurately predict cervical spine parameters from lateral cervical radiographs. In particular, the performances on the external validation set demonstrate the robustness and the high degree of generalizability of our model on images acquired in a different institution

    Investigation of different hydrogels for nucleus replacement : a biomechanical study

    Get PDF
    Hydrogels are considered promising for disc regeneration strategies. However, it is currently unknown whether the destruction of the natural interface between nucleus and surrounding structures caused by nucleotomy and an inadequate annulus closure diminishes the mechanical competence of the disc. To clarify these mechanisms and to evaluate whether hydrogels are able to restore the biomechanical behaviour of the disc a combined in vivo and in vitro and approach was used

    Numerical prediction of the mechanical failure of the intervertebral disc under complex loading conditions

    Get PDF
    Finite element modeling has been widely used to simulate the mechanical behavior of the intervertebral disc. Previous models have been generally limited to the prediction of the disc behavior under simple loading conditions, thus neglecting its response to complex loads, which may induce its failure. The aim of this study was to generate a finite element model of the ovine lumbar intervertebral disc, in which the annulus was characterized by an anisotropic hyperelastic formulation, and to use it to define which mechanical condition was unsafe for the disc. Based on published in vitro results, numerical analyses under combined flexion, lateral bending, and axial rotation with a magnitude double that of the physiological ones were performed. The simulations showed that flexion was the most unsafe load and an axial tensile stress greater than 10 MPa can cause disc failure. The numerical model here presented can be used to predict the failure of the disc under all loading conditions, which may support indications about the degree of safety of specific motions and daily activities, such as weight lifting
    corecore